
Differential Equations of the Deflection Curve

The problems for Section 10.3 are to be solved by integrating the 
differential equations of the deflection curve. All beams have constant
flexural rigidity EI. When drawing shear-force and bending-moment
diagrams, be sure to label all critical ordinates, including maximum
and minimum values.

Problem 10.3-1 A propped cantilever beam AB of length L is loaded
by a counterclockwise moment M0 acting at support B (see figure). 

Beginning with the second-order differential equation of the
deflection curve (the bending-moment equation), obtain the reactions,
shear forces, bending moments, slopes, and deflections of the beam.
Construct the shear-force and bending-moment diagrams, labeling all

critical ordinates. 

Solution 10.3-1 Propped cantilever beam
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Select MA as the redundant reaction.
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B.C. 3 v(L) � 0 � MA
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Problem 10.3-2 A fixed-end beam AB of length L supports a uniform
load of intensity q (see figure). 

Beginning with the second-order differential equation of the 
deflection curve (the bending-moment equation), obtain the reactions,
shear forces, bending moments, slopes, and deflections of the beam. 
Construct the shear-force and bending-moment diagrams, labeling all 
critical ordinates. 

Solution 10.3-2 Fixed-end beam (uniform load)
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SLOPE (FROM EQ. 4)

DEFLECTION (FROM EQ. 5)
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M0 x2
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SHEAR-FORCE AND BENDING-MOMENT DIAGRAMS
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Select MA as the redundant reaction.

REACTIONS (FROM SYMMETRY AND EQUILIBRIUM)

MB � MA

BENDING MOMENT (FROM EQUILIBRIUM)
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DIFFERENTIAL EQUATIONS

(2)

B.C. 1 � C1 � 0

(3)

B.C. 2 v(0) � 0 � C2 � 0
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Problem 10.3-3 A cantilever beam AB of length L has a fixed support 
at A and a roller support at B (see figure). The support at B is moved 
downward through a distance �B. 

Using the fourth-order differential equation of the deflection curve
(the load equation), determine the reactions of the beam and the equation
of the deflection curve. (Note: Express all results in terms of the imposed
displacement �B.) 

Solution 10.3-3 Cantilever beam with imposed displacement �B
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SHEAR-FORCE AND BENDING-MOMENT DIAGRAMS
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REACTIONS (FROM EQUILIBRIUM)

RA � RB (1) MA � RBL (2)

DIFFERENTIAL EQUATIONS
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(5)
(6)

EIv � C1x3�6 � C2x2�2 � C3x + C4 (7)

B.C. 1 v(0) � 0 � C4 � 0

B.C. 2 � C3 � 0

B.C. 3 � C1L � C2 � 0 (8)

B.C. 4 v(L) � ��B � C1L � 3C2 � �6EI�B �L2 (9)

SOLVE EQUATIONS (8) AND (9):
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Problem 10.3-4 A cantilever beam AB of length L has a fixed support at
A and a spring support at B (see figure). The spring behaves in a linearly
elastic manner with stiffness k. 

If a uniform load of intensity q acts on the beam, what is the 
downward displacement �B of end B of the beam? (Use the second-order
differential equation of the deflection curve, that is, the bending-moment
equation.) 

Solution 10.3-4 Beam with spring support
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q � intensity of uniform load
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�B � downward displacement of point B.

BENDING MOMENT (FROM EQUILIBRIUM)
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Problem 10.3-5 A propped cantilever beam AB of length L supports 
a triangularly distributed load of maximum intensity q0 (see figure). 

Beginning with the fourth-order differential equation of the deflection
curve (the load equation), obtain the reactions of the beam and the 
equation of the deflection curve. 

Solution 10.3-5 Propped cantilever beam
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Problem 10.3-6 The load on a propped cantilever beam AB of length L
is parabolically distributed according to the equation q � q0(1 � x2/L2),
as shown in the figure. 

Beginning with the fourth-order differential equation of the deflection
curve (the load equation), obtain the reactions of the beam and the 
equation of the deflection curve. 

Solution 10.3-6 Propped cantilever beam
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B.C. 1 � (6)

B.C. 2 � C3 � 0

B.C. 3 v(0) � 0 � C4 � 0

B.C. 4 v(L) � 0 � (7)

Solve Eqs. (6) and (7):

SHEAR FORCE (EQ. 2)
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Parabolic load q � q0(1 � x2�L2)
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B.C. 1 � C1L � C2 � 5q0 L2�12 (6)

B.C. 2 � C3 � 0

B.C. 3 v(0) � 0 � C4 � 0

B.C. 4 v(L) � 0 � C1L � 3C2 � 7q0 L2�30 (7)

v¿(0) � 0
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Solve Eqs. (6) and (7):

C1 � 61q0L�120 C2 � �11q0L2�120

SHEAR FORCE (EQ. 2)

REACTIONS RA � V(0) � 61q0 L �120

RB � �V(L) � 19q0L �120

From equilibrium:

DEFLECTION CURVE (FROM EQ. 5)

� �
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Problem 10.3-7 The load on a fixed-end beam AB of length L is 
distributed in the form of a sine curve (see figure). The intensity 
of the distributed load is given by the equation q � q0 sin �x/L.

Beginning with the fourth-order differential equation of the deflection
curve (the load equation), obtain the reactions of the beam and the 
equation of the deflection curve. 

Solution 10.3-7 Fixed-end beam (sine load)
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FROM SYMMETRY: RA � RB MA � MB
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SHEAR FORCE (EQ. 2)

BENDING MOMENT (EQ. 3)

DEFLECTION CURVE (FROM EQ. 5)
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Problem 10.3-8 A fixed-end beam AB of length L supports 
a triangularly distributed load of maximum intensity q0 (see figure). 

Beginning with the fourth-order differential equation of the deflection
curve (the load equation), obtain the reactions of the beam and the 
equation of the deflection curve. 

Solution 10.3-8 Fixed-end beam (triangular load)
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q � q0(1 � x �L)

DIFFERENTIAL EQUATIONS

(1)

(2)EIv‡ � V � �q0 ¢x �
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6
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2
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6
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2
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Problem 10.3-9 A counterclockwise moment M0 acts at the midpoint 
of a fixed-end beam ACB of length L (see figure). 

Beginning with the second-order differential equation of the
deflection curve (the bending-moment equation), determine all reactions
of the beam and obtain the equation of the deflection curve for the 
left-hand half of the beam. 

Then construct the shear-force and bending-moment diagrams for the
entire beam, labeling all critical ordinates. Also, draw the deflection curve
for the entire beam. 

Solution 10.3-9 Fixed-end beam (M0 = applied load)
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B.C. 1 � C3 � 0

B.C. 2 (6)

B.C. 3 v(0) � 0 � C4 � 0

B.C. 4 v(L) � 0 (7)

Solve eqs. (6) and (7):

SHEAR FORCE (EQ. 2)

REACTIONS

RB � �V(L) �
3q0 L

20

RA � V(0) �
7q0 L

20

V �
q0

20 L
 (7L2 � 20 Lx � 10x2)

C2 � �
q0 L2

20
C1 �

7q0 L

20

∴ C1L � 3C2 �
q0 L2

5

∴ C1L � 2C2 �
q0 L2

4
v¿(L) � 0

v¿(0) � 0 BENDING MOMENT (EQ. 3)

REACTIONS

DEFLECTION CURVE (EQ. 5)

or

v � �
q0 x2

120 LEI
 (L � x)2(3L � x)

v � �
q0 x2

120 LEI
 (3L3 � 7L2x � 5 Lx2 � x3)

MB � �M(L) �
q0 L2

30

MA � �M(0) �
q0 L2

20

M � �
q0

60 L
 (3L3 � 21 L2x � 30 Lx2 � 10x3)

A

L
—
2

L
—
2

y

x
BC

MB

M0

MA

RA RB

Beam is symmetric; load is antisymmetric.

Therefore, RA � �RB MA � �MB �C � 0

DIFFERENTIAL EQUATIONS (0 � x � L �2)

(1)

(2)

(3)

B.C. 1 � C1 � 0
B.C. 2 v(0) � 0 � C2 � 0

B.C. 3 Also, MB �
�RA L

6
∴ MA �

RAL

6
v ¢L

2
≤� 0

v¿(0) � 0

EIv � RA

x3

6
� MA

x2

2
� C1x � C2

EIv¿ � RA

x2

2
� MAx � C1

EIv– � M � RAx � MA

EQUILIBRIUM (OF ENTIRE BEAM)

MB � 0 MA � M0 � MB � RAL � 0

or,

DEFLECTION CURVE (EQ. 3)

¢0 � x �
L

2
≤v � �

M0 x2

8 LEI
 (L � 2x)

∴ MA � �MB �
M0

4
MA �

RAL

6

∴ RA � �RB �
3M0

2L

RAL

6
� M0 �

RAL

6
� RAL � 0

a



Problem 10.3-10 A propped cantilever beam AB supports 
a concentrated load P acting at the midpoint C (see figure). 

Beginning with the second-order differential equation of the 
deflection curve (the bending-moment equation), determine all reactions
of the beam and draw the shear-force and bending-moment diagrams for
the entire beam. 

Also, obtain the equations of the deflection curves for both halves 
of the beam, and draw the deflection curve for the entire beam. 

Solution 10.3-10 Propped cantilever beam
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DIAGRAMS

At point of inflection: � � �max�2

�max �
M0 L2

216 EI

3M0
 2L

V

O

M0
 4

M0
 4

M O

�
M0 
 2

M0
 2

�

L
6
—

L
3
—

L
6
—

L
6
—�max

A

L
—
2

L
—
2

y

x
BC

MA

RA
RB

P

P � applied load at x � L�2

Select RB as redundant reaction.

REACTIONS (FROM EQUILIBRIUM)

RA � P � RB (1) (2)

BENDING MOMENTS (FROM EQUILIBRIUM)

M � RB(L � x) ¢L
2

� x � L≤

¢0 � x �
L

2
≤

M � RAx � MA � (P � RB)x � ¢PL

2
� RB L≤

MA �
PL

2
� RB L

DIFFERENTIAL EQUATIONS (0 � x � L�2)

(3)

(4)

(5)

B.C. 1 � C1 � 0

B.C. 2 v(0) � 0 � C2 � 0

DIFFERENTIAL EQUATIONS (L�2 � x � L)

(6)

(7)

(8)EIv � RB L
x2

2
� RB

x3

6
� C3x � C4

EIv¿ � RBLx � RB

x2

2
� C3

EIv– � M � RB(L � x)

v¿(0) � 0

EIv � (P � RB)
x3

6
� ¢PL

2
� RB L≤ 

x2

2
� C1x � C2

EIv¿ � (P � RB)
x2

2
� ¢PL

2
� RB L≤ x � C1

EIv– � M � (P � RB)  x � ¢PL

2
� RB L≤
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B.C. 3 v(L) � 0 � (9)

B.C. 4 continuity condition at point C

at :

or (10)

From eq. (9): (11)

B.C. 5 continuity condition at point C.

at :

or 

From eq. (1):

From eq. (2):

SHEAR-FORCE AND BENDING MOMENT DIAGRAMS

MA �
PL

2
� RBL �

3PL

16

RA � P � RB �
11P

16

RB �
5P

16

� RB L ¢L
2

8
≤� RB ¢L3

48
≤�

PL2

8
 ¢L

2
≤�

RB L3

3
�

PL3

8

(P � RB)
L3

48
� ¢PL

2
� RB L≤ 

L2

8

(v)Left � (v)Rightx �
L

2

C4 � �
RB L3

3
�

PL3

8

C3 � �
PL2

8

� RB¢L2 ≤� RB ¢L
2

8
≤� C3

(P � RB)¢L
2

8
≤� ¢PL

2
� RB L≤ ¢L

2
≤

(v¿)Left � (v¿)Rightx �
L

2

C3 L � C4 � �
RB L3

3
DEFLECTION CURVE FOR 0 � x � L/2 (FROM EQ. 5)

(0 � x � L/2)

DEFLECTION CURVE FOR L/2 � x � L (FROM EQ. 8)

(L/2 � x � L)

SLOPE IN RIGHT-HAND PART OF THE BEAM

From eq. (7):

Point of zero slope:

� 0.5528L

MAXIMUM DEFLECTION

DEFLECTION CURVE

�max � �(v)x�x1
� 0.009317 

PL3

EI

x1 �
L

5
¢5 � �5≤5x2

1 � 10Lx1 � 4L2 � 0

v¿ � �
P

32EI
 (4L2 � 10Lx � 5x2)

� �
P

96EI
 (L � x)(�2L2 � 10Lx � 5x2)

v � �
P

96EI
 (�2L3 � 12L2x � 15Lx2 � 5x3)

v � �
Px2

96EI
 (9L � 11x)

11P
16

5P
16

V

O
�

3PL
 16

 3L
 11

M

O

�

 5PL
  32

x1

3L
11
— �max

CA B



Method of Superposition

The problems for Section 10.4 are to be solved by the method of
superposition. All beams have constant flexural rigidity EI unless 
otherwise stated. When drawing shear-force and bending-moment 
diagrams, be sure to label all critical ordinates, including maximum 
and minimum values. 

Problem 10.4-1 A propped cantilever beam AB of length L carries 
a concentrated load P acting at the position shown in the figure. 

Determine the reactions RA, RB, and MA for this beam. Also, draw the
shear-force and bending-moment diagrams, labeling all critical ordinates. 

Solution 10.4-1 Propped cantilever beam
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A

a b

B

L

MA

RA
RB

P

Select RB as redundant.

EQUILIBRIUM

RA � P � RB MA � Pa � RBL

RELEASED STRUCTURE AND FORCE-DISPLACEMENT

RELATIONS

COMPATIBILITY

�B � (�B)1 � (�B)2 � 0

OTHER REACTIONS (FROM EQUILIBRIUM)

SHEAR-FORCE AND BENDING-MOMENT DIAGRAMS

MA �
Pab

2L2  (L � b)RA �
Pb

2L3  (3L2 � b2)

RB �
Pa2

2L3  (3L � a)

�B �
Pa2

6EI
 (3L � a) �

RBL3

3EI
� 0

A Ba

P

b
       (�B)1 � 

Pa2 
(3L � a)

      6EI

       (�B)2 � 
PBL3

(3L � a)
      3EIA

BL

RB

RA

RB

V

O

�

MA

M1

M1 �  RBb
M

O

�



Problem 10.4-2 The propped cantilever beam shown in the figure 
supports a uniform load of intensity q on the left-hand half of the beam. 

Find the reactions RA, RB, and MA, and then draw the shear-force and
bending-moment diagrams, labeling all critical ordinates. 

Solution 10.4-2 Propped cantilever beam
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Select RB as redundant.

EQUILIBRIUM

RELEASED STRUCTURE AND FORCE-DISPLACEMENT

RELATIONS

COMPATIBILITY �B � (�B)
1

� (�B)
2

� 0

Substitute for (�B)
1

and (�B)
2

and solve for RB:

OTHER REACTIONS (FROM EQUILIBRIUM)

MA �
9qL2

128
RA �

57qL

128

RB �
7qL

128

MA �
qL2

8
� RBLRA �

qL

2
� RB

SHEAR-FORCE AND BENDING-MOMENT DIAGRAMS

Mmax �
945qL2

32,768

x1 �
57L

128

A B
MA

RA

RB

q

L
—
2

L
—
2

A
B

       (�B)
1 �   

PqL4 

                         384EI

       (�B)
2 �   

RBL3 

                         3EI
A BL

RB

q

L
2

L
2

x1

RA

RB

V

O
�

M
O

Mmax

MA�

Problem 10.4-3 The figure shows a propped cantilever beam ABC
having span length L and an overhang of length a. A concentrated load 
P acts at the end of the overhang. 

Determine the reactions RA, RB, and MA for this beam. Also, draw the
shear-force and bending-moment diagrams, labeling all critical ordinates. 

A

L a

B C

MA

RA
RB

P



Solution 10.4-3 Beam with an overhang
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Select MA as redundant.

EQUILIBRIUM

RELEASED STRUCTURE AND FORCE-DISPL. EQS.

COMPATIBILITY �A � (�A)
1

� (�A)
2

� 0

Substitute for (�A)
1

and (�A)
2

and solve for MA:

MA �
Pa

2

RB �
1

L
 (MA � PL � Pa)RA �

1

L
 (MA � Pa)

OTHER REACTIONS (FROM EQUILIBRIUM)

SHEAR-FORCE AND BENDING-MOMENT DIAGRAMS

RB �
P

2L
 (2L � 3a)RA �

3Pa

2L

A B

(�A)1

(�A)2MA

L

(�A)
2 � MAL

              3EI

(�A)
1 � PAL 

             6EI

C

P

a

P

3Pa
2L

V O

�

Pa
 2

Pa

M

O

�

L
3

Problem 10.4-4 Two flat beams AB and CD, lying in horizontal planes,
cross at right angles and jointly support a vertical load P at their 
midpoints (see figure). Before the load P is applied, the beams just touch
each other. Both beams are made of the same material and have the same
widths. Also, the ends of both beams are simply supported. The lengths
of beams AB and CD are LAB and LCD, respectively. 

What should be the ratio tAB/tCD of the thicknesses of the beams 
if all four reactions are to be the same? 

Solution 10.4-4 Two beams supporting a load P

P

B

D

C

A

tAB

tCD

For all four reactions to be the same, each beam
must support one-half of the load P.

DEFLECTIONS

�CD �
(P�2)L3

CD

48EICD

�AB �
(P�2)L3

AB

48EIAB

COMPATIBILITY

�AB � �CD or

MOMENT OF INERTIA

tAB

tCD

�
LAB

LCD

∴
L3

AB

t3
AB

�
L3

CD

t3
CD

ICD �
1

12
  bt3

CDIAB �
1

12
 bt3

AB

L3
AB

IAB

�
L3

CD

ICD



Problem 10.4-5 Determine the fixed-end moments (MA and MB) and
fixed-end forces (RA and RB) for a beam of length L supporting a 
triangular load of maximum intensity q0 (see figure). Then draw the
shear-force and bending-moment diagrams, labeling all critical ordinates. 

Solution 10.4-5 Fixed-end beam (triangular load)
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A B
MBMA

RA RB

q0

L
2
— L

2
—

Select MA and MB as reduntants.

SYMMETRY MA � MB RA � RB

EQUILIBRIUM RA � RB � q0L�4

RELEASED STRUCTURE AND FORCE-DISPLACEMENT

RELATIONS

COMPATIBILITY �A � (�A)
1

� (�A)
2

� 0

Substitute for (�A)
1

and (�A)
2

and solve for MA:

SHEAR-FORCE AND BENDING-MOMENT DIAGRAMS

x0 � 0.2231L

M1 �
q0 L2

32

MA � MB �
5q0 L2

96

A B

(�A)
1

(�A)
2

MA

MB � MA

qo

L

(�A)
2 � MAL

              2EI

(�A)
1 � 5q0L2

            192EI

q0L
 4

q0L
 4V

O

�

5q0L2

 96

M1
M

O
x0

�
5q0L2

 96�



Problem 10.4-6 A continuous beam ABC with two unequal spans, one
of length L and one of length 2L, supports a uniform load of intensity q
(see figure). 

Determine the reactions RA, RB, and RC for this beam. Also, draw the
shear-force and bending-moment diagrams, labeling all critical ordinates. 

Solution 10.4-6 Continuous beam with two spans
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A

RA RB RC

L

B C

2L

q

Select RB as redundant.

EQUILIBRIUM

RELEASED STRUCTURE AND FORCE-DISPLACEMENT

RELATIONS

(�B)2 �
4RBL3

9 EI

(�B)1 �
11qL4

12 EI

RC �
3qL

2
�

1

3
 RBRA �

3qL

2
�

2

3
 RB

COMPATIBILITY

�B � (�B)1 � (�B)2 � 0

OTHER REACTIONS (FROM EQUILIBRIUM)

SHEAR-FORCE AND BENDING-MOMENT DIAGRAMS

RC �
13qL

16
RA �

qL

8

RB �
33qL

16

11qL4

12EI
�

4RBL3

9EI
� 0

A

L

B

C

2L

q

(�B)1

13L
 16

13
16

169
512

19
16

7 
8

1
8

  1
128

L
8

L
4

 V
qL

 M
qL2

�
�

3
8�

O

O
13L
  8

A

L

B

C

2L

q

(�B)1
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Problem 10.4-7 Beam ABC is fixed at support A and rests (at point B)
upon the midpoint of beam DE (see the first part of the figure). Thus,
beam ABC may be represented as a propped cantilever beam with an
overhang BC and a linearly elastic support of stiffness k at point B
(see the second part of the figure). 

The distance from A to B is L � 10 ft, the distance from B to C is 
L /2 � 5 ft, and the length of beam DE is L � 10 ft. Both beams have the
same flexural rigidity EI. A concentrated load P � 1700 lb acts at the free
end of beam ABC.

Determine the reactions RA, RB, and MA for beam ABC. Also, draw
the shear-force and bending-moment diagrams for beam ABC, labeling 
all critical ordinates. 

Solution 10.4-7 Beam with spring support

D

E

A B
C

P = 1700 lb

L = 10 ft  = 5 ft

k 

MA

RA
RB

B C

P

A

L
2
—

Select RB as redundant.

EQUILIBRIUM

RA � RB � P MA � RBL � 3PL�2

RELEASED STRUCTURE AND FORCE-DISPL. EQS.

COMPATIBILITY

Beam DE:

RB �
28P

17

7PL3

12 EI
�

RBL3

3 EI
�

RB L3

48EI

k �
48 EI

L3

�B � (�B)1 � (�B)2 �
RB

k

OTHER REACTIONS (FROM EQUILIBRIUM)

NUMERICAL VALUES

P � 1700 lb L � 10 ft � 120 in.

RA � 1100 lb RB � 2800 lb
MA � 30,000 lb-in.

SHEAR-FORCE AND BENDING-MOMENT DIAGRAMS

� 27.27 in.

x1 �
300

11
 in.

MA �
5PL

34
RA �

11P

17

A
B

       (�B)1 �   
7PL3 

                         12EI

       (�B)2 �   
RBL3 

                         3EI
A

L
2

L

RB

C

P

1100

1700

V
(LB) O

�

 x1

      M
(LB � IN.) 

O

�102,000

30,000

}



Problem 10.4-8 The beam ABC shown in the figure has flexural rigidity
EI � 4.0 MN·m2. When the loads are applied to the beam, the support at
B settles vertically downward through a distance of 6.0 mm. 

Calculate the reaction RB at support B.

Solution 10.4-8 Overhanging beam with support settlement
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A CB

6 kN/m 3 kN

3 m 1 m 1 m

RB6 mm settlement

Select RB as redundant.

� � settlement of support B

RELEASED STRUCTURE AND FORCE-DISPL. EQS.

COMPATIBILITY �B � (�B)1 � (�B)2 � (�B)3 � �

Substitute for (�B)1, (�B)2, and (�B)3 and solve for RB:

NUMERICAL VALUES

q � 6.0 kN/m P � 3.0 kN � � 6.0 mm
L � 4.0 m EI � 4.0 MN � m2

SUBSTITUTE INTO THE EQUATION FOR RB

RB � 7.11 kN

RB �
1

2048
 ¢351qL � 2816P � 6144 

EI¢
L3 ≤

A
B

       (�B)1 �   
117qL4 

                         2048EI

       (�B)2 �   
11PL3 

                        24EI

A B

RB

q

3L
 4

 L
 4

 L
 4

P

C

C

C

       (�B)3 �   
RBL3 

                        3EIA
B

Problem 10.4-9 A beam AB is cantilevered from a wall at one end
and held by a tie rod at the other end (see figure). The beam is an S 6
� 12.5 I-beam section with length L � 6 ft. The tie rod has a diameter
of 1/4 inch and length H � 3 ft. Both members are made of steel with
E � 30 � 106 psi. A uniform load of intensity q � 200 lb/ft acts along
the length of the beam. Before the load q is applied, the tie rod just
meets the end of the cable.

(a) Determine the tensile force T in the tie rod due to the uniform
load q. 

(b) Draw the shear-force and bending-moment diagrams for the
beam, labeling all critical ordinates. 

A

L = 6 ft

B

C

q = 200 lb/ft

H = 3 ft

S 6 � 12.5

in. tie rod
1—
4



Solution 10.4-9 Beam supported by a tie rod
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Select the force T in the tie rod as redundant.

RELEASED STRUCTURE AND FORCE-DISPLACEMENT

RELATIONS

COMPATIBILITY (�B)
1

� (�B)
2

� (�B)
3

or

T �
3qAL4

8 AL3 � 24 IH

qL4

8 EI
�

TL3

3 EI
�

TH

EA

NUMERICAL VALUES

q � 200 lb/ft L � 6 ft H � 3 ft

E � 30 � 106 psi

Beam: S 6 � 12.5 I � 22.1 in.4

Tie Rod: d � 0.25 in. A � 0.04909 in.2

Substitute: T � 398 lb

SHEAR-FORCE AND BENDING-MOMENT DIAGRAMS

RA � qL � T � 802 lb

� 14,530 lb-in.

x1 � 23.9 in.

x2 � 24.2 in.

MA �
qL2

2
� TL

A

A

B

B

B

L

T

T

q

       (�B)
1 �   

qL4 

                         8EI

       (�B)
2 �   

TL3 

                        3EI

       (�B)
3 �   

TH
                             EAH

C

A
B

L

q

MA

RA
T

 x1

V
(lb) 

M
(lb-in.) 

O

O

 x2

�398

802

4760

�14,530

Problem 10.4-10 The figure shows a nonprismatic, propped cantilever
beam AB with flexural rigidity 2EI from A to C and EI from C to B. 

Determine all reactions of the beam due to the uniform load 
of intensity q. (Hint: Use the results of Problems 9.7-1 and 9.7-2.) A

B
C

MA

RA

RB

q

2EI
EI

L
2
—L

2
—



Solution 10.4-10 Nonprismatic beam
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Select RB as redundant.

RELEASED STRUCTURE

(�B)
1

� downward deflection of end B due to load q

(�B)
2

� upward deflection due to reaction RB

FORCE-DISPLACEMENT RELATIONS

From prob. 9.7-2:

� 

From prob. 9.7-1:

� 

COMPATIBILITY

�B � (�B)1 � (�B)2 � 0

or

EQUILIBRIUM

MA �
qL2

2
� RBL �

7qL2

48
RA � qL � RB �

31qL

48

RB �
17qL

48

17qL4

256EI
�

3RBL3

16EI
� 0

(�B)2 �
3RBL3

16 EI
�B �

PL3

24 EI1
 ¢1 � 7 

I1

I2
≤

(�B)1 �
17 qL4

256 EI
I2 S 2II1 S I

�B �
qL4

128EI1
 ¢1 � 15 

I1

I2
≤

A B

q

2EI
EI

L
2
—L

2
—

Problem 10.4-11 A beam ABC is fixed at end A and supported by beam
DE at point B (see figure). Both beams have the same cross section and
are made of the same material. 

(a) Determine all reactions due to the load P. 
(b) What is the numerically largest bending moment in either beam? 

A

D

CB

E

P

MA

RA
RD RE

L—
4

L—
4

L—
4

L—
4

A B

RB
2EI

EI



Solution 10.4-11 Beam supported by a beam
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Let RB � interaction force between beams select RB
as redundant.

RELEASED STRUCTURE AND FORCE-DISPL. EQS.

COMPATIBILITY (�B)
1

� (�B)
2

� (�B)
3

Substitute and solve:

SYMMETRY AND EQUILIBRIUM

(minus means downward)

BEAM ABC:

BEAM DE:

�Mmax� �
PL

2

Mmax � MB �
5PL

17

Mmax � MB � �
PL

2

MA � RB ¢L
2
≤� PL �

3PL

17

RA � P � RD � RE � �
23P

17

RD � RE �
RB

2
�

20P

17

RB �
40P

17

A B

B

       (�B)
1 �   

5PL3 

                        48EI

       (�B)
2 �   

RBL3 

                         24EI

       (�B)
3 �   

RBL3 

                         384EI

A

L
2

L
2

RB

RB

L
4

L
4

C

C

P
(�B)

1

(�B)
2

ED

Problem 10.4-12 A three-span continuous beam ABCD with three 
equal spans supports a uniform load of intensity q (see figure). 

Determine all reactions of this beam and draw the shear-force 
and bending-moment diagrams, labeling all critical ordinates. 

Solution 10.4-12 Three-span continuous beam

A

L

C
D

B

RB

RA
RC

RDL L

q

SELECT RB AND RC AS REDUNDANTS.

SYMMETRY AND EQUILIBRIUM

RC � RB

RELEASED STRUCTURE

FORCE-DISPLACEMENT RELATIONS

COMPATIBILITY

�B � (�B)1 � (�B)2 � 0 ∴ RB �
11qL

10

(�B)2 �
5 RB L3

6 EI
(�B)1 �

11qL4

12 EI

RA � RD �
3qL

2
� RB

FORCE-DISPLACEMENT RELATIONS

COMPATIBILITY

�B � (�B)1 � (�B)2 � 0

OTHER REACTIONS

From symmetry and equilibrium:

RA � RD �
2 qL

5

RC � RB �
11qL

10

∴ RB �
11qL

10

(�B)2 �
5 RB L3

6 EI
(�B)1 �

11qL4

12 EI

A

A

RB

L

B
D

D

L

q

RC � RB

(�B)2

(�B)1

L

C

CB



Problem 10.4-13 A beam AC rests on simple supports at points A
and C (see figure). A small gap � � 0.4 in. exists between the unloaded
beam and a support at point B, which is midway between the ends of 
the beam. The beam has total length 2L � 80 in. and flexural rigidity
EI � 0.4 � 109 lb-in.2

Plot a graph of the bending moment MB at the midpoint of the beam
as a function of the intensity q of the uniform load. 

Hints: Begin by determining the intensity q0 of the load that will just
close the gap. Then determine the corresponding bending moment 
(MB)0. Next, determine the bending moment MB (in terms of q) for the
case where q � q0. Finally, make a statically indeterminate analysis and
determine the moment MB (in terms of q) for the case where q � q0. Plot
MB (units of lb-in.) versus q (units of lb/in.) with q varying from 
0 to 2500 lb/in. 
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A

L

D

L

q

L

RA RB RC RD

B C

2L
 5

3
5

3
5

1
2

1
2

2
5

 2
25

 2
25

 1
40

2
5

 V
qL

 M
qL2

2L
 5

�
�

�

 1
10�  1

10�

O

O

A C

B

RA
RC

L = 40 in. L = 40 in.

q

RB

� = 0.4 in.

LOADING, SHEAR-FORCE, AND BENDING-MOMENT DIAGRAMS

Mmax �
2 qL2

25

MB � MC � �
qL2

10
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q0 � load required to close the gap

� � magnitude of gap

(MB)
0

� bending moment when q � q0

CASE 1 q � q0

RA � RC � qL

CASE 2 q � q0

(1)

(2)

CASE 3 q � q0 (statically indeterminate)

Select RB as redundant.

RELEASED STRUCTURE

(�B)2 �
RBL3

6EI

(�B)1 �
5qL4

24EI

(MB)0 �
q0 L2

2
�

12EI¢
5 L2

q0 �
24 EI¢

5 L4�B � ¢ �
5q0 L4

24 EI

MB �
qL2

2

�B �
5 qL4

24 EI

COMPATIBILITY �B � (�B)
1

� (�B)
2

� �

or

EQUILIBRIUM

RA � RC 2RA � 2qL � RB � 0

NUMERICAL VALUES

� � 0.4 in. L � 40 in. EI � 0.4 � 109 lb-in.2

Units: lb, in.
From eqs. (1) and (2): q0 � 300 lb�in.

(MB)0 � 240,000 lb-in.

For q � q0: MB � 800 q (3)

For q � q0: MB � 300,000 � 200 q (4)

GRAPH OF BENDING MOMENT MB (EQS. 3 AND 4)

MB � 0 at q � 1500

MB � RAL �
qL2

2
�

3EI¢
L2 �

qL2

8

RA � RC �
3qL

8
�

3EI¢
L3

RB �
5qL

4
�

6 EI¢
L3

5qL4

24 EI
�

RB L3

6 EI
� ¢

Solution 10.4-13 Beam on a support with a gap

A CB

RA RC

L L 

q

RB

�

A

A

RB

C

C

q

(�B)2

(�B)1

O

300,000

200,000

20001000

200,000

100,000

100,000�

�
q0 � 300

EQ. (3)

EQ. (4)

 MB
(lb-in.) (MB)

0 � 240,000

     q 
(lb/in.)

MB � 0   at
q � 1500



Problem 10.4-14 A fixed-end beam AB of length L is subjected 
to a moment M0 acting at the position shown in the figure. 

(a) Determine all reactions for this beam. 
(b) Draw shear-force and bending-moment diagrams for the special

case in which a � b � L /2. 

Solution 10.4-14 Fixed-end beam (M0 � applied load)
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A

L

a b

B

MBMA

M0

RA RB

Select RB and MB as redundants.

L � a � b

EQUILIBRIUM

RA � �RB MA � MB � RBL � M0

RELEASED STRUCTURE AND FORCE-DISPL. EQS.

(�B)3 �
MB L2

2 EI
(uB)3 �

MB L

EI

(�B)2 �
RB L3

3 EI
(uB)2 �

RB L2

2 EI

(�B)1 �
M0 a

2 EI
 (a � 2b)(uB)1 �

M0 a

EI

COMPATIBILITY

�B � �(�B)
1

� (�B)
2

� (�B)
3

� 0

or 2RBL3 � 3MBL2 � �3M0a(a � 2b) (1)

�B � (�B)
1

� (�B)
2

� (�B)
3

� 0

or RBL2 � 2MBL � �2M0 a (2)

SOLVE EQS. (1) AND (2):

FROM EQUILIBRIUM:

SPECIAL CASE a � b � L�2

MA � �MB �
M0

4
RA � �RB �

3M0

2L

MA �
M0 b

L2  (3a � L)RA �
6M0 ab

L3

MB � �
M0 a

L2  (3b � L)RB � �
6M0 ab

L3

A

a b

B

MBMA

M0

RA RB

       (�B)
1 �   

M0a 

                         2EI

A M0

(�B)
1

       (	B)
1 �   

M0a 

                         EI

 (	B)
2 �   

RBL2 

                     2EI

      (	B)
3 �   

MBL 

                         EI        (�B)
3 �   

MBL2 

                         2EI

       (�B)
2 �   

RBL3 

                         3EI

(	B)
1

B

A

(�B)
2

(	B)
2

(	B)
3

B

A B

(a � 2b)

RB

MB

(�B)
3 

3M0
 2L

M0
 4

M0
 4

 V

L
6

�

M0
 2

M0
 2

�

O

O
M



Problem 10.4-15 A temporary wood flume serving as a channel for 
irrigation water is shown in the figure. The vertical boards forming the
sides of the flume are sunk in the ground, which provides a fixed support.
The top of the flume is held by tie rods that are tightened so that there is
no deflection of the boards at that point. Thus, the vertical boards may be
modeled as a beam AB, supported and loaded as shown in the last part of
the figure.

Assuming that the thickness t of the boards is 1.5 in., the depth d of
the water is 40 in., and the height h to the tie rods is 50 in., what is the
maximum bending stress � in the boards? (Hint: The numerically largest
bending moment occurs at the fixed support.) 

Solution 10.4-15 Side wall of a wood flume
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h =
50 in.

t = 1.5 in.

d =
40 in.

B

A

Select RB as redundant.

Equilibrium:

RELEASED STRUCTURE AND FORCE-DISPL. EQS.

From Table G-1, Case B:

(�B)2 �
RB L3

3 EI

(�B)1 �
q0 a4

30EI
�

q0 a3

24 EI
 (L � a) �

q0 a3

120 EI
 (5L � a)

MA �
q0 a2

6
� RB L

COMPATIBILITY

�B � (�B)
1

� (�B)
2

� 0 � 

MAXIMUM BENDING MOMENT

NUMERICAL VALUES

a � 40 in. L � 50 in. t � 1.5 in.
b � width of beam

� � 62.4 lb/ft3 � 0.03611 lb�in.3

Pressure p � �a q0 � pb � �ab

s�
Mmax

S
� 509 psiS �

bt2

6
� 0.3750 b

Mmax �
ga3b

120 L2  (20 L2 � 15 aL � 3a2) � 19605 b

s�
Mmax

S
S �

bt2

6

�
q0 a2

120 L2  (20 L2 � 15 aL � 3a2)

Mmax � MA �
1

6
 q0 a2 � RB L

RB �
q0 a3(5L � a)

40 L3BA

L

aRA
RB

MA

B
A

q0

(�B)
1

BA
       (�B)

2 �   
RBL3 

                         3EI

RB

t

N.A.

b



Problem 10.4-16 Two identical, simply supported beams AB and CD
are placed so that they cross each other at their midpoints (see figure).
Before the uniform load is applied, the beams just touch each other at 
the crossing point. 

Determine the maximum bending moments (MAB)max and (MCD)max
in beams AB and CD, respectively, due to the uniform load if the intensity
of the load is q � 6.4 kN/m and the length of each beam is L � 4 m. 

Solution 10.4-16 Two beams that cross
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A

B

C

D
q

F � interaction force between the beams

UPPER BEAM

(�B)
1

� downward deflection due to q

(�B)
2

� upward deflection due to F

�AB � (�B)
1

� (�B)
2

LOWER BEAM

COMPATIBILITY �AB � �CD

� F �
5qL

16

5qL4

384EI
�

FL3

48EI
�

FL3

48EI

�CD �
FL3

48EI

�
5qL4

384EI
�

FL3

48EI

�
FL3

48EI

�
5qL4

384EI

UPPER BEAM

LOWER BEAM

NUMERICAL VALUES

q � 6.4 kN/m (MAB)
max

� 6.05 kN � m

L � 4 m (MCD)
max

� 8.0 kN � m

(MCD)max �
5qL2

64

Mmax �
FL

4
�

5qL2

64

(MAB)max �
121qL2

2048
M1 �

3qL2

64

Mmax �
121qL2

2048

x1 �
11L

32

RA �
11qL

32

A

L
2

B

q

F

L
2

C

L
2

D

F

L
2

A

5qL
 16

B

q

RA RB � RA

Mmax

M1

x1 x1

M

O

M

O



Problem 10.4-17 The cantilever beam AB shown in the figure is an 
S 6 � 12.5 steel I-beam with E � 30 � 106 psi. The simple beam DE is a
wood beam 4 in. � 12 in. (nominal dimensions) in cross section with 
E � 1.5 � 106 psi. A steel rod AC of diameter 0.25 in., length 10 ft, and
E � 30 � 106 psi serves as a hanger joining the two beams. The hanger
fits snugly between the beams before the uniform load is applied 
to beam DE.

Determine the tensile force F in the hanger and the maximum bending
moments MAB and MDE in the two beams due to the uniform load, which
has intensity q � 400 lb/ft. (Hint: To aid in obtaining the maximum 
bending moment in beam DE, draw the shear-force and bending-moment
diagrams.) 

Solution 10.4-17 Beams joined by a hanger
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D

A B

C

E

10 ft 10 ft

Wood beam

Steel rod

6 ft

10 ft
400 lb/ft

S 6 � 12.5

F � tensile force in hanger 

Select F as redundant.

(1) CANTILEVER BEAM AB

S 6 � 12.5 I1 � 22.1 in.4

L1 � 6 ft � 72 in.

E1 � 30 � 106 psi

(2) HANGER AC

d � 0.25 in. L2 � 10 ft � 120 in.

E2 � 30 � 106 psi

� � elongation of AC

(F � lb, � � in.)

¢ �
FL2

E2A2
� 81.488 � 10�6F

A2 �
�d 2

4
� 0.049087 in.2

bF � lb

� � in.
(�A)1 �

FL3
1

3E1I1
� 187.66 � 10�6F

(3) BEAM DCE

L3 � 20 ft � 240 in.

q � 400 lb/ft

� 33.333 lb/in.

E3 � 1.5 � 106 psi

4 in. � 12 in. (nominal)

I3 � 415.28 in.4

� 2.3117 in. � 462.34 � 10�6 F

COMPATIBILITY

(�A)
1

� � � (�C)
3

187.66 � 10�6 F � 81.488 � 10�6 F

� 2.3117 � 462.34 � 10�6 F

F � 3160 lb

(1) MAX. MOMENT IN AB

MAB � FL1 � (3160 lb)(6 ft)

� 18,960 lb-ft

(3) MAX. MOMENT IN DCE

RD �
qL3

2
�

F

2
� 2420 lb

bF � lb

� � in.

(�C)3 �
5qL4

3

384E3I3
�

FL3
3

48E3I3

A B

F
L1

F

F

L2

A

C

F

D
C

E

L3
 2

q

L3
 2



Problem 10.4-18 The beam AB shown in the figure is simply supported
at A and B and supported on a spring of stiffness k at its midpoint C. 
The beam has flexural rigidity EI and length 2L. 

What should be the stiffness k of the spring in order that the 
maximum bending moment in the beam (due to the uniform load) 
will have the smallest possible value? 

Solution 10.4-18 Beam supported by a spring
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SHEAR-FORCE AND BENDING-MOMENT DIAGRAMS

x1 � 6.050 ft

Mmax � 7320 lb-ft

MC � 4200 lb-ft

Mmax

Mc

x1 x1

       M
(LB � FT)

O

O

  V
(LB)

1580

�1580

2420

�2420

x1

A

L

B

L

q

C
k 

BENDING MOMENT

LOCATION OF MAXIMUM POSITIVE MOMENT

RA � qx � 0 x1 �
RA

q
dM

dx
� 0

M � RAx �
qx2

2

MAXIMUM POSITIVE MOMENT

MAXIMUM NEGATIVE MOMENT

FOR THE SMALLEST MAXIMUM MOMENT:

|M1| � |MC| or M1 � �MC

Solve for RA:

EQUILIBRIUM

Fvert � 0 2RA � RC � 2qL � 0

RC � 2 qL (2 � 12)

a

RA �  qL(12 � 1)

R2
A

2q
� �RAL �

qL2

2

MC � (M)x�L � RAL �
qL2

2

M1 � (M)x�x1
�

R2
A

2q
A

L

B

L

q

C
k 

RC

RA RB � RA

x

M1 M1

MC

x1

M

O

MDE � 7320 lb-ft



Problem 10.4-19 The continuous frame ABC has a fixed support at A, 
a roller support at C, and a rigid corner connection at B (see figure).
Members AB and BC each have length L and flexural rigidity EI. 
A horizontal force P acts at midheight of member AB. 

(a) Find all reactions of the frame. 
(b) What is the largest bending moment Mmax in the frame? 

(Note: Disregard axial deformations in member AB and consider 
only the effects of bending.) 

Solution 10.4-19 Frame ABC with fixed support
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DOWNWARD DEFLECTION OF BEAM

DOWNWARD DISPLACEMENT OF SPRING

(�C)2 �
RC

k
�

2 qL

k
 (2 � 12)

(�C)1 �
5 qL4

24 EI
�

RC L3

6EI
�

qL4

24 EI
 (812 � 11)

COMPATIBILITY (�C)
1

� (�C)
2

Solve for k:

� 89.63 
EI

L3

k �
48 EI

7 L3  (6 � 512)

A

B

P

L—
2

L—
2

L

C

HA

MA

VC

VA

Select VC as redundant.

EQUILIBRIUM VA � VC HA � P

MA � PL�2 � VCL

RELEASED STRUCTURE AND FORCE-DISPL. EQS.

(�C)1 � (uB)1L �
PL3

8EI

(uB)1 �
PL2

8EI

COMPATIBILITY (�C)
1

� (�C)
2

Substitute for (�C)
1

and (�C)
2

and solve:

FROM EQUILIBRIUM:

HA � P MA �
13PL

32
VA �

3P

32

VC �
3P

32

(�C)2 � (uB)2L �
VCL3

3EI
�

4VCL3

3EI

(uB)2 �
VCL2

EI

A

L
2

B L

C
P

L
2

(�B)
1

(�C)
1

A

B

L

L

C
(�B)

2

VC

(�C)
2



Problem 10.4-20 The continuous frame ABC has a pinned support at 
A, a pinned support at C, and a rigid corner connection at B (see figure).
Members AB and BC each have length L and flexural rigidity EI. A
horizontal force P acts at midheight of member AB. 

(a) Find all reactions of the frame. 
(b) What is the largest bending moment Mmax in the frame? (Note:

Disregard axial deformations in members AB and BC and consider only
the effects of bending.) 

Solution 10.4-20 Frame ABC with pinned supports
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REACTIONS AND BENDING MOMENTS

Mmax �
13PL

32

A P

B L C

L
2

P

L
2

3P
32

3P
32

13PL
  32

A

B
C

3PL
 32

13PL
  32

A

B

P

L
—
2

L—
2

L

C

HA

HC

VC

VA

Select VC as redundant.

EQUILIBRIUM VA � VC

RELEASED STRUCTURE AND FORCE-DISPL. EQS.

(uB)1 �
PL2

16EI
�(�C)1 � (uB)1 L �

PL3

16EI

HC �
P

2
� VC

HA �
P

2
� VC

COMPATIBILITY

FROM EQUILIBRIUM:

VA �
3P

32
�HA �

13P

32
�HC �

19P

32

(�C)1 � (�C)2 
PL3

16 EI
�

2VC L3

3 EI
 VC �

3P

32

(�C)2 � (uB)2L �  
VC L3

3 EI
�

2VC L3

3 EI

(uB)2 � (VCL) 
L

3 EI
�

VC L2

3EI

A

B L

C

(�C)
1

L
2

P

L
2

(�B)
1

A

B

L

C

(�C)
2

VC

(�B)
2



Problem 10.4-21 A wide-flange beam ABC rests on three identical
spring supports at points A, B, and C (see figure). The flexural rigidity 
of the beam is EI � 6912 � 106 lb-in.2, and each spring has stiffness 
k � 62,500 lb/in. The length of the beam is L � 16 ft. 

If the load P is 6000 lb, what are the reactions RA, RB, and RC? Also,
draw the shear-force and bending-moment diagrams for the beam, labeling
all critical ordinates. 

Solution 10.4-21 Beam on three springs
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REACTIONS AND BENDING MOMENTS

Mmax �
13 PL

64

A

B

L

L C

L
2

P

L
2

3P
32

19P
32

3P
32

13P
 32 A

B C

3PL
 32

13PL
  64

B

L
2
—

L
4
—

L
4
—

A C

RA
RB

RC

P

Select RB as redundant.

EQUILIBRIUM

RELEASED STRUCTURE AND FORCE-DISPL. EQS.

RC �
P

4
�

RB

2
RA �

3P

4
�

RB

2

(Case  5, Table G-2)

�
RB

2k
�

RB L3

48 EI
�(upward)

(�B)2 �
1

2
[ (�A)2 � (�C)2 ] �

RB L3

48 EI

(�C)2 �
RB

2k

(�A)2 �
RB

2k

(�B)1 �
P

2k
�

11 PL3

768EI
�(downward)

(�B)1 �
1

2
[ (�A)1 � (�C)1 ] �

P ¢L
4
≤ B3L2 � 4 ¢L

4
≤

2R
48EI

(�C)1 �
P

4k

(�A)1 �
3P

4kB

L
2
—

L
4
—

L
4
—

A C

RA
RB

RC

P

k k k

B

3P
4

—
P
4

—

A C

P

k k

B
A C

k k
RB



Problem 10.4-22 A fixed-end beam AB of length L is subjected to a 
uniform load of intensity q acting over the middle region of the beam 
(see figure). 

(a) Obtain a formula for the fixed-end moments MA and MB in terms
of the load q, the length L, and the length b of the loaded part of the beam. 

(b) Plot a graph of the fixed-end moment MA versus the length b of
the loaded part of the beam. For convenience, plot the graph in the 
following nondimensional form: 

�
qL

M
2/

A

12
� versus �

L
b

�

with the ratio b/L varying between its extreme values of 0 and 1. 
(c) For the special case in which a � b � L/3, draw the shear-force

and bending-moment diagrams for the beam, labeling all critical ordinates. 

Solution 10.4-22 Fixed-end beam
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COMPATIBILITY

Substitute and solve:

Let 

FROM EQUILIBRIUM:

RC �
3P

32
 ¢64 � k*

72 � k*
≤

RA �
P

32
 ¢1344 � 13k*

72 � k*
≤

RB �
P

16
 ¢384 � 11k*

72 � k*
≤

k* �
kL3

EI
�(nondimensional)

RB � P ¢ 384 EI � 11kL3

1152 EI � 16 kL3≤

(�B)1 � (�B)2 �
RB

k
NUMERICAL VALUES

EI � 6912 � 106 lb-in.2 k � 62,500 lb�in.

L � 16 ft � 192 in. P � 6000 lb

RB � 3000 lb

RA � 3000 lb RC � 0

SHEAR-FORCE AND BENDING-MOMENT DIAGRAMS

k* �
kL3

EI
� 64

�3000

3000

O

  V
(lb) 

144,000

O

M
(lb-in.) 

A

a ab

L

B

MBMA

RA RB

q

MA � MB

a �
L � b

2

RA � RB �
qb

2

FROM EXAMPLE 10-4, EQ. (10-25a):

MA �
Pa1b1

2

L2

A

a ab

L

B

MBMA

RA RB

q

A

a1 b1

L

B

MBMA

P



Problem 10.4-23 A beam supporting a uniform load of inten-
sity q throughout its length rests on pistons at points A, C, and
B (see figure). The cylinders are filled with oil and are 
connected by a tube so that the oil pressure on each piston 
is the same. The pistons at A and B have 
diameter d1, and the piston at C has diameter d2.

(a) Determine the ratio of d2 to d1 so that the largest 
bending moment in the beam is as small as possible. 

(b) Under these optimum conditions, what is the largest
bending moment Mmax in the beam? 

(c) What is the difference in elevation between point C
and the end supports? 

SECTION 10.4 Method of Superposition 663

FOR THE PARTIAL UNIFORM LOAD

. . . (lengthy substitution) . . .

(a) MA � MB �
qb

24L
(3L2 � b2)

�
qb

24 L
(3L2 � b2)

�
q

L2 B L2x2

2
�

2Lx3

3
�

x4

4
R

(L�b)�2

(L�b)�2

�
q

L2 �
(L�b)�2

(L�b)�2

(L2x � 2 L x2 � x3) dx

�
q

L2 �
(L�b)�2

(L�b)�2

x(L � x)2dx

MA � �
a�b

a

dMA � �
(L�b)�2

(L�b)�2

dMA

dMA �
(qdx)(x)(L � x)2

L2

(b) GRAPH OF FIXED-END MOMENT

(c) SPECIAL CASE a � b � L �3

MA � MB �
13qL2

324
RA � RB �

qL

6

MA

qL2�12

MA

qL2�12
�

b

2L
 ¢3 �

b2

L2≤

x

MA

qdx

1.0

0.5

0
0 0.5 1.0

b
L

1/6

0
� 1

6

V
qL

0

�
13
324 �

13
324

� 324
5

648
19

L L

A

ppp

C B

d1 d1d2



Problem 10.4-24 A thin steel beam AB used in conjunction with an
electromagnet in a high-energy physics experiment is securely bolted 
to rigid supports (see figure). A magnetic field produced by coils C results
in a force acting on the beam. The force is trapezoidally distributed with
maximum intensity q0 � 18 kN/m. The length of the beam between 
supports is L � 200 mm and the dimension c of the trapezoidal load is 
50 mm. The beam has a rectangular cross section with width b � 60 mm
and height h � 20 mm.

Determine the maximum bending stress �max and the maximum
deflection �max for the beam. (Disregard any effects of axial deformations
and consider only the effects of bending. Use E � 200 GPa.) 
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BENDING MOMENT

LOCATION OF MAXIMUM POSITIVE MOMENT

RA � qx � 0

MAXIMUM POSITIVE MOMENT

MAXIMUM NEGATIVE MOMENT

FOR THE SMALLEST MAXIMUM MOMENT:

|M1| � |MC| OR M1 � �MC

RA
2

2q
� �RAL �

qL2

2

MC � (M)x�L � RAL �
qL2

2

M1 � (M)x�x1
�

RA
2

2q

x1 �
RA

q
dM

dx
� 0

M � RA x �
qx2

2

Solve for RA:

EQUILIBRIUM

2RA � RC � 2 qL � 0

REACTIONS BASED UPON PRESSURE

(a) � 

� 1.682

(b)

� 0.08579 qL2

(c) DIFFERENCE IN ELEVATION

By symmetry, beam has zero slope at C.

�A � Difference in elev.

� 0.01307 qL4�EI

Point C is below points A and B by the amount
0.01307qL4�EI.

�A �
RAL3

3EI
�

qL4

8EI
�

qL4

24EI
(8�2 � 11)

RA � qL( �2 � 1)

MMAX � M1 �
RA

2

2q
�

qL2

2
(3 � 2�2)

d2

d1
�BRC

RA

�B2(2 � �2)

�2 � 1
�  

4�8

RC � p ¢�d 2
2

4
≤RA � RB � p ¢�d 1

2

4
≤

RC � 2qL(2 � �2)

a Fvert � 0

RA � qL( �2 � 1)

Solution 10.4-23 Beam supported by pistons

A C B

q

L LRA RB
RC

x

M1 M1

MC

x1

M

O

A

L

q

C

RA

q0

A

L

C

h

c c

B
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Solution 10.4-24 Fixed-end beam (trapezoidal load)

FROM SYMMETRY AND EQUILIBRIUM

MA � MB

SELECT MA AND MB AS REDUNDANTS

RELEASED STRUCTURE WITH APPLIED LOAD

Consider the following beam from Case 6, Table G-2:

Consider the load P as an element of the 
distributed load.

Replace P by qdx, where

x from 0 to  L �4

q � q0 x from L �4 to L �2

�
13q0 L3

1536 EI
�

11q0L
3

384 EI
�

19q0 L3

512EI

�
1

2EI �
L� 2

L� 4

q0x(L � x)  dx

(uA)1 �
1

2EI �
L� 4

0

¢4q0x

L
≤(x)(L � x)  dx

q �
4q0 x

L

�0 �
Px

24 EI
(3L2 � 4x2)u0 �

Px(L � x)

2 EI

RA � RB �
3q0L

8

RELEASED STRUCTURE WITH REDUNDANTS

(�A)
2

� (�B)
2

MB � MA

FROM Case 10, Table G-2:

COMPATIBILITY

�A � (�A)
1

� (�A)
2

� 0

DEFLECTION AT THE MIDPOINT

BENDING MOMENT AT THE MIDPOINT

MAXIMUM BENDING MOMENT

∴ Mmax � MA �
19q0 L2

256
MA 7 MC

�
3q0 L

8
 ¢L

2
≤�

19q0 L2

256
�

7q0 L2

96
�

31q0 L2

768

MC � RA ¢L
2
≤� MA �

q0 L2

24
�

q0 L2

32

�
19q0 L4

7680 EI

�
361q0 L4

30,720 EI
� ¢19q0L

2

256
≤ ¢ L2

8 EI
≤

�max � �1 � �2 �
361q0 L4

30,720 EI
�

MA L2

8 EI

MA �
19q0 L2

256

19 q0 L3

512 EI
�

MAL

2 EI
� 0

�2 �
MA L2

8EI
(uA)2 �

MAL

2EI

�
19q0 L4

7680EI
�

19q0 L4

2048EI
�

361q0 L4

30,720EI

�
1

24EI �
L� 2

L� 4

q0 x(3L2 � 4x2)  dx

�1 �
1

24EI �
L� 4

0

¢4q0x

L
≤(x)(3L2 � 4x2)  dx

q0

A

c �

B

L

L
4

RA RB

MBMA

L
4

L
4

q0

A B

�1(�A)
1

(�A)
1 � (�B)

1
 

(�B)
1

�0
�0 �0

x x
P P

�
2

(�A)
2

(�B)
2

MB � MAMA
A B



Temperature Effects

The beams described in the problems for Section 10.5 have constant
flexural rigidity EI.

Problem 10.5-1 A cable CD of length H is attached to the midpoint 
of a simple beam AB of length L (see figure). The moment of inertia 
of the beam is I, and the effective cross-sectional area of the cable 
is A. The cable is initially taut but without any initial tension. 

Obtain a formula for the tensile force S in the cable when the
temperature drops uniformly by �T degrees, assuming that the beam
and cable are made of the same material (modulus of elasticity E and
coefficient of thermal expansion �). (Use the method of superposition 
in the solution.) 

Solution 10.5-1 Uniform temperature change
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NUMERICAL VALUES

q0 � 18 kN�m L � 200 mm b � 60 mm

h � 20 mm E � 200 GPa

I �
bh3

12
� 40 � 10�9 m4

s �
bh2

6
� 4.0 � 10�6 m3

�max �
19 q0 L4

7680 EI
� 0.00891 mm

smax �
Mmax

S
� 13.4 MPa

Mmax �
19 q0 L2

256
� 53.44 Ň � ˇm

A
C

B

D
Cable

Beam
� T

HL
—
2

L—
2

�T � Decrease in temperature use method of
superposition. Select tensile force S in the cable as
redundant.

RELEASED STRUCTURE

I � Moment of inertia
A � Cross-sectional area

BEAM

CABLE

COMPATIBILITY

SOLVE FOR S: S �
48 EIAH�(¢T)

AL3 � 48 IH

SL3

48 EI
� �H(¢T) �

SH

EA

(�C)1 � (�C)2

(�C)2 � �H(¢T) �
SH

EA
�(downward)

(�C)1 �
SL3

48 EI
�(downward)

A
C

D

C

B

Cable

Beam
� T

� T

H

L
—
2

L—
2S

S



Problem 10.5-2 A propped cantilever beam, fixed at the left-hand 
end A and simply supported at the right-hand end B, is subjected to 
a temperature differential with temperature T1 on its upper surface 
and T2 on its lower surface (see figure). 

Find all reactions for this beam. (Use the method of superposition 
in the solution. Also, if desired, use the results from Problem 9.13-1.) 

Solution 10.5-2 Beam with temperature differential
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A
h

L

MA

RA
RB

T1

T2

y

x
B

Probs. 10.5-2 and 10.5-3

Use the method of superposition.
Select MA as redundant.

RELEASED STRUCTURE

(From the answer to prob. 9.11-1)

(uA)1 �
�L(T2 � T1)

2h
�(clockwise)

COMPATIBILITY (�A)
1

� (�A)
2

EQUILIBRIUM

MA � RAL � 0

RB � �RA

RB � �
3� EI(T2 � T1)

2hL

a Fvert � 0

RA �
3� EI(T2 � T1)

2hL

aMB � 0

MA �
3� EI(T2 � T1)

2h

�L(T2 � T1)

2h
�

MAL

3 EI

(uA)2 �
MA L

3EI
�(counterclockwise)

A
h

L

MA

RA RB

T1

T2

B

A BT1

T2

A B

MA

Problem 10.5-3 Solve the preceding problem by integrating the
differential equation of the deflection curve. 

Solution 10.5-3 Beam with temperature differential

M � RB (L � x)

DIFFERENTIAL EQUATION (EQ. 10-39b)

or

EIv¿ � RB Lx � RB ¢x
2

2
≤�

� EI(T2 � T1)

h
x � C1

EIv– � RB(L � x) �
� EI(T2 � T1)

h

EIv– � M �
� EI(T2 � T1)

h

B.C. 1 � C1 � 0

B.C. 2 v(0) � 0 � C2 � 0

B.C. 3 v(L) � 0

FROM EQUILIBRIUM:

MA �
3� EI(T2 � T1)

2h
MA � RAL

RA � �RB �
3� EI(T2 � T1)

2hL

∴  RB � �
3� EI (T2 � T1)

2hL

EIv � RBL ¢x
2

2
≤� RB ¢x

3

6
≤�

� EI(T2 � T1)

2h
x2 � C2

v¿(0) � 0

A
h

L

MA

RA
RB

T1

T2

y

x
B



Problem 10.5-4 A two-span beam with spans of lengths L and 
L /2 is subjected to a temperature differential with temperature 
T1 on its upper surface and T2 on its lower surface (see figure). 

Determine all reactions for this beam. (Use the method of 
superposition in the solution. Also, if desired, use the results from 
Problems 9.8-5 and 9.13-3.) 

Solution 10.5-4 Beam with temperature differential
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A
h

L

CB

RA RCRB

T1

T2

T1

T2

L—
2Probs. 10.5-4 and 10.5-5

Use the method of superposition.
Select RC as redundant.

RELEASED STRUCTURE

From prob. 9.13-3:

(�C)1 �
3� L2 (T2 � T1)

8h
 (upward)

From prob. 9.8-5:

COMPATIBILITY (�C)
1

� (�C)
2

� 0

FROM EQUILIBRIUM:

RB �
9� EI(T2 � T1)

2hL
RB � �

3RC

2

RA � �
3� EI(T2 � T1)

2hL
RA �

RC

2

RC � �
3� EI(T2 � T1)

hL

3�L2(T2 � T1)

8h
� �

RC L3

8 EI

(�C)2 �
RC L3

8 EI
 (upward)

A
h

L

CB

RA RCRB

T1

T2

L—
2

A BT1

T2

A CB

RC

Problem 10.5-5 Solve the preceding problem by integrating the
differential equation of the deflection curve. 

Solution 10.5-5 Beam with temperature differential

A
h

L

CB

RA RCRB

T1

T2

L—
2

y

x

DIFFERENTIAL EQUATION (EQ. 10-39b)

EIv– � M �
� EI(T2 � T1)

h

For convenience, Let (1)

(2)

PART AB OF THE BEAM (0 	 x 	 L)

M � RAx

(3)
EIv � RAx3�6 � �x2�2 � C1x � C2 (4)

B.C. 1 v(0) � 0 � C2 � 0

B.C. 2 v(L) � 0 � RAL2 � 6C1 � �3�L (5)

EIv¿ � RA x2�2 � bx � C1

EIv– � RA x � b

EIv– � M � b

b�
� EI(T2 � T1)

h



Longitudinal Displacements at the Ends of Beams

Problem 10.6-1 Assume that the deflected shape of a beam 
AB with immovable pinned supports (see figure) is given by the
equation v � –� sin �x/L, where � is the deflection at the midpoint
of the beam and L is the length. Also, assume that the beam has
constant axial rigidity EA.

(a) Obtain formulas for the longitudinal force H at the ends 
of the beam and the corresponding axial tensile stress �t. 

(b) For an aluminum-alloy beam with E � 10 � 106 psi,
calculate the tensile stress �t when the ratio of the deflection 
� to the length L equals 1/200, 1/400, and 1/600. 

Solution 10.6-1 Beam with immovable supports
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PART BC OF THE BEAM (L 	 x 	 3L�2)

M � RAx � RB (x � L)

From equilibrium, RB � �3RA (6)
� M � �2RAx � 3RAL

(7)

EIv � �RAx3�3 � 3RALx2�2 � �x2�2 � C3x � C4

B.C. 3 v(L) � 0 (8)

� 7RAL3 � 6C3L � 6C4 � �3�L2 (9)

B.C. 4 v(3L�2) � 0

� 18RAL3 � 12C3L � 8C4 � �9�L2 (10)

EIv¿ � �RAx2 � 3RALx � bx � C3

EIv– � M � b� �2RAx � 3RAL � b

CONTINUITY CONDITION AT B

At x � L

From Eqs. (3) and (7):
RA(L2�2) � �L � C1 � �RAL2 � 3RAL2 � �L � C3

or 3RAL2 � 2C1 � 2C3 � 0 (11)

SOLVE EQS. (5), (9), (10), AND (11) FOR RA:

Also: C1 � ��L �4 C2 � 0 C3 � 2�L
C4 � �3�L2�4

From Eq. (6):

From equilibrium:

RC � 2RA � �
3� EI(T2 � T1)

hL

RB �
9� EI (T2 � T1)

2hL

RA � �
3b

2L
� �

3� EI(T2 � T1)

2hL

(EIv¿)AB � (EIv¿)BC

AH

L

H

y

xB
�

(a)

Eq. (10-42):

Eq. (10-45):

Eq. (10-46): st �
H

A
�

�2 E�2

4L2

H �
E Al

L
�

�2 E A�2

4L2

l�
1

2 �
L

0

¢dv

dx
≤

2

 dx �
�2�2

4L

dv

dx
� �

��

L
 cos 

�x

L
v � �� sin 

�x

L

(b) ALUMINUM ALLOY

E � 10 � 106 psi

Note: The axial stress increases as the deflection
increases.

�t (psi) 617 154 69

st � 24.67 � 106 ¢�

L
≤

2

(psi)

�

L

1

200
1

400

1

600

A H

y

xB
�



Problem 10.6-2 (a) A simple beam AB with length L and height h
supports a uniform load of intensity q (see the first part of the figure).
Obtain a formula for the curvature shortening � of this beam. Also,
obtain a formula for the maximum bending stress �b in the beam due 
to the load q. 

(b) Now assume that the ends of the beam are pinned so that
curvature shortening is prevented and a horizontal force H develops 
at the supports (see the second part of the figure). Obtain a formula 
for the corresponding axial tensile stress �t. 

(c) Using the formulas obtained in parts (a) and (b), calculate 
the curvature shortening �, the maximum bending stress �b, and 
the tensile stress �t for the following steel beam: length L � 3 m, 
height h � 300 mm, modulus of elasticity E � 200 GPa, and 
moment of inertia I � 36 � 106 mm4. Also, the load on the beam 
has intensity q � 25 kN/m.

Compare the tensile stress �t produced by the axial forces with 
the maximum bending stress �b produced by the uniform load. 

Solution 10.6-2 Beam with uniform load
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A

L

B

q

h

A

L

B

q

h
H H

h � Height of beam

(a) CURVATURE SHORTENING

From Case 1, Table G-2:

Eq. (10-42):

BENDING STRESS

sb �
Mc

I
�

qhL2

16I

c �
h

2
Mmax �

qL2

8

�
17q2L7

40,320 E2I2

l�
1

2 �
L

0

¢dv

dx
≤

2

 dx

dv

dx
� �

q

24 EI
 (L3 � 6 L x2 � 4 x3)

(b) IMMOVABLE SUPPORTS

Eq. (10-45):

Eq. (10-46):

(c) NUMERICAL VALUES q � 25 kN�m

L � 3 m h � 300 mm E � 200 GPa
I � 36 � 106 mm4 � � 0.01112 mm

�b � 117.2 MPa �t � 0.7411 MPa

The bending stress is much larger than the axial
tensile stress due to curvature shortening.

st �
H

A
�

El

L
�

17q2L6

40,320 EI 2

H �
EAl

L

A

L

B

q

L

q

H H


